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Abstract

Estimating intra- and extra-axonal microstructure parameters, such as volume fractions and diffusivities,
has been one of the major efforts in brain microstructure imaging with MRI. The Standard Model (SM) of
diffusion in white matter has unified various modeling approaches based on impermeable narrow cylinders
embedded in locally anisotropic extra-axonal space. However, estimating the SM parameters from a set of
conventional diffusion MRI (dMRI) measurements is ill-conditioned. Multidimensional dMRI helps resolve
the estimation degeneracies, but there remains a need for clinically feasible acquisitions that yield robust
parameter maps. Here we find optimal multidimensional protocols by minimizing the mean-squared error of
machine learning-based SM parameter estimates for two 3T scanners with corresponding gradient strengths
of 40 and 80 mT/m. We assess intra-scanner and inter-scanner repeatability for 15-minute optimal protocols
by scanning 20 healthy volunteers twice on both scanners. The coefficients of variation all SM parameters
except free water fraction are . 10% voxelwise and 1− 4% for their region-averaged values. As the achieved
SM reproducibility outcomes are similar to those of conventional diffusion tensor imaging, our results enable
robust in vivo mapping of white matter microstructure in neuroscience research and in the clinic.
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1. Introduction

The promise of increased sensitivity and specificity
in detecting brain microstructure changes is a ma-
jor driving force for developing biophysical mod-
els in diffusion MRI (dMRI) (Jones, 2010). This
imaging modality measures random displacements
of water molecules within a voxel (Callaghan, 1991),
which are ∼ 10µm in clinical experimental settings
(Kiselev, 2017). Thus, dMRI images encode in-
formation about the tissue architecture restricting
the diffusion of water molecules at a scale orders of
magnitude below current MRI resolution (Novikov
et al., 2019; Alexander et al., 2019), where disease
processes originate. Brain microstructure mapping
could provide biomarkers of pathological processes
that would aid in early diagnosis (Assaf, 2008).
This prompts the development of dMRI scan pro-

tocols and parameter estimation methods that are
not only sensitive and specific, but also reproducible
within clinically feasible scan time.

For water diffusion in brain white matter (WM),
the overarching multiple Gaussian compartment
framework is the so-called Standard Model (SM),
cf. Fig. 1 and (Novikov et al., 2019) for a re-
view. Briefly, axons (and possibly glial processes)
are represented by impermeable zero-radius cylin-
ders (the so-called “sticks”) arranged in locally co-
herent fiber fascicles. The diffusion in the extra-
axonal space of each fascicle is assumed to be Gaus-
sian and described by an axially symmetric diffu-
sion tensor. The third, optional tissue compart-
ment is the cerebro-spinal fluid (CSF). Such multi-
component fascicles are distributed in a voxel ac-
cording to an arbitrary fiber orientation distribu-
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Figure 1: The Standard Model of diffusion in white matter. Shown is an elementary fiber fascicle (whose dMRI signal yields
the so-called fiber response kernel), characterized by the compartment diffusivities and water fractions. A voxel is a collection
of such fascicles oriented via an arbitrary fiber ODF P(n̂).

tion function (ODF). All fascicles in a voxel are
assumed to have the same compartment fractions
and diffusivities, and differ from each other only by
orientation (cf. Section 2 for technical details).

The SM encompasses1 a number of WM models
made of anisotropic Gaussian compartments with
axons represented by sticks (Kroenke et al., 2004;
Jespersen et al., 2007, 2010; Fieremans et al., 2011;
Zhang et al., 2012; Sotiropoulos et al., 2012; Jensen
et al., 2016; Jelescu et al., 2016a; Kaden et al.,
2016; Reisert et al., 2017; Novikov et al., 2018; Ve-
raart et al., 2018). From the SM point of view,
earlier models impose constraints either on com-
partment parameters or the functional form of the
fiber ODF; such constraints improve robustness but
may introduce biases into the estimation of re-
maining parameters (cf. recent reviews by Jelescu
and Budde (2017); Novikov et al. (2019); Alexan-
der et al. (2019)). The constraints are typically
employed when analyzing common dMRI acquisi-
tion protocols based on low-to-intermediate diffu-
sion weightings with pulsed field gradient (PFG)
measurements, since the problem of recovering un-
constrained SM parameters is ill-conditioned (Je-
lescu et al., 2016a; Novikov et al., 2018).

Multidimensional diffusion MRI (Mitra, 1995;
Westin et al., 2016; Topgaard, 2017) is a way to en-
code diffusion along more than one direction, prob-
ing the response to an ellipsoid encoded by a 3× 3

B-tensor (cf. Figure 2 and Section 2 below). This
adds complementary information to that accessi-
ble through conventional PFG, also known as lin-
ear tensor encoding (LTE) (Jespersen et al., 2013;
Szczepankiewicz et al., 2016). To resolve the degen-
eracy in SM parameter estimation, PFG/LTE has
been combined with planar tensor encoding (PTE)
at intermediate diffusion weightings (Coelho et al.,
2019b; Reisert et al., 2019). Fieremans et al. (2018)
and Dhital et al. (2018) analyzed the advantages
of combining LTE with spherical tensor encoding
(STE), and PTE, respectively, for SM parameter
estimation. Similary, Afzali et al. (2019) used nu-
merical simulations to compare the estimation er-
rors of the SM for a few discrete combinations of
LTE, PTE and STE encodings. While all these
studies show the value of multidimensional MRI for
improving SM parameter estimation, some combi-
nations of B-tensor encodings provide more precise
and accurate estimation results than others.

Optimizing the parameter estimation is a com-
plementary way to increase precision. This has
made supervised machine learning (ML)-based ap-
proaches gain attention lately. Neural networks
(Golkov et al., 2016), polynomial regression (Reis-
ert et al., 2017), or random forest (Palombo et al.,
2020) have provided useful results in different dMRI
applications. The ML approach has been applied to
estimate SM parameters by (Reisert et al., 2017),

1The SM name originates from a tongue-in-cheek association with the Standard Model in the particle physics (Novikov
et al., 2019), as both encompass a fair bit of previous modeling effort from various groups. Here “standard” refers to common
assumptions among modeling approaches and does not imply “exact”. While particle physicists are on the lookout for physics
beyond their SM, in dMRI such physics has been already found. At finite diffusion time, tissue compartments exhibit residual
non-Gaussian time-dependent diffusion. These effects, neglected in the SM, are below 10% in clinical dMRI experiments.
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and followed by more recent works (Coelho et al.,
2021a; Gyori et al., 2021; de Almeida Martins et al.,
2021). Irrespective of the implementation, all these
works concluded that ML estimation alone is unable
to resolve SM parameter degeneracies, and that a
sufficiently rich acquisition protocol is needed. Fur-
thermore, Coelho et al. (2021b) recently showed
that as the signal-to-noise ratio (SNR) decreases,
parameter estimates become increasingly influenced
by the ML prior (the training set), and that an opti-
mal acquisition minimizes such an undesired effect.

In this work we aim to use ML not only to
enhance parameter estimation, but also to guide
the experimental design. Acquisition optimiza-
tion strategies are needed to reduce scan times
and/or improve quality of SM parameter estima-
tion. Coelho et al. (2019a) explored the space of
isotropically distributed B-tensors and selected the
combination that maximized the precision of the
cumulant tensor elements up to the second order in
B. Interestingly, this work did not impose measure-
ments to be grouped in shells, but these emerged
from the optimization. Subsequently, Lampinen
et al. (2020) used the Cramér-Rao bound (CRB)
(Rao, 1945; Cramér, 1946) of the SM parameters to
optimize the acquisition for an extended version of
the SM that also accounts for intra-compartmental
T2 relaxation values (Veraart et al., 2018). While
the CRB provides a lower bound on the variance for
an unbiased estimator, this is not necessarily opti-
mal for ML estimators which are usually biased at
the expense of increased precision. Here we pro-
pose to use instead the (root) mean squared error
(R)MSE as a quality metric for experiment design,
as it enables trading off between bias and precision
at each SNR. Hence, minimal MSE, rather than a
proxy like the CRB, is a target for the protocol
design. Furthermore, the optimal protocol preci-
sion serves as a benchmark for the experimental
precision in a reproducibility study, where other in-
evitable factors, such as imaging artifacts and mis-
registration, can affect the net parameter variation.

Complementary to the search for the optimal ac-
quisition, there has been an increasingly prescient
need to evaluate reproducibility of dMRI, to enable
its adoption in clinic and clinical research. Grech-
Sollars et al. (2015) performed a multi-center re-
producibility study of apparent diffusion coefficient
(ADC) and diffusion tensor imaging (DTI) parame-
ters with 1.5T and 3T MRI scanners, and found the
relative error (coefficient of variation, or COV) of
< 4% for average values in different WM regions

of interest (ROI). For diffusion kurtosis imaging
(DKI) (Jensen et al., 2005), Henriques et al. (2021)
recently proposed a regularized estimator and stud-
ied its reproducibility on different publicly available
datasets. Modeling the dMRI signal aims for more
specific information than the above signal represen-
tations. Andica et al. (2020) assessed scan-rescan
and inter-vendor reproducibility of neurite orienta-
tion dispersion and density imaging metrics (Zhang
et al., 2012), which is a constrained version of the
SM. However, reproducibility studies for the uncon-
strained SM are so far lacking because they require
non-conventional (beyond-LTE) diffusion data.

The main outcomes of this work are (i) a frame-
work that minimizes the estimation error of the
SM parameters by coupling experiment design with
ML-based parameter estimation, and (ii) its valida-
tion in a reproducibility study involving 20 healthy
volunteers on two clinical scanners with different
gradient strengths. In Section 2 we introduce the
SM adapted for multidimensional dMRI, and the
ML-based parameter estimation. In Section 3 we
describe the experimental design, image acquisi-
tion, and processing. In Section 4 we report the
resulting 15-minute optimal acquisition protocols
for two 3T scanners with corresponding gradient
strengths of 40 and 80mT/m, Fig. 3. We assess
the optimized protocols via numerical noise propa-
gation and in vivo experiments, Fig. 4. Finally, in
Section 5 we quantify the reproducibility of SM pa-
rameter estimates for 20 normal subjects in a scan-
rescan on both scanners. Our optimized protocol
achieves voxelwise COV . 10% for all SM param-
eters except free water fraction; the COV for ROI-
averaged values were 1− 4%, Fig. 6. These actual
experimental values turn out to be in a good agree-
ment with predictions based on the optimal MSE.

2. Theory

2.1. Multidimensional dMRI

Multidimensional dMRI, also known as q-space
trajectory imaging (QTI) (Eriksson et al., 2013;
Westin et al., 2016), probes a trajectory q(t), rather
than a point in the diffusion q-space, within a sin-
gle measurement. In other words, QTI treats the
dMRI signal as a functional of q(t), rather than a
function of q, which results in the signal being sen-
sitive to displacements along multiple dimensions
simultaneously.

For Gaussian diffusion, the picture gets sim-
plified, as the cumulant series is truncated at

3



Figure 2: Elements in a multidimensional dMRI acquisition. a) shows a representation of an STE waveform g(t) with the x
(red), y (green), z (blue) axes. Superquadric glyphs representing B-tensor shapes are arranged in a barycentric ternary diagram
(Topgaard, 2017), according to their linear, planar, and spherical components. Axially symmetric B-tensors lie on the edge
of such diagram. b) Contour lines that show the maximum achievable b-value for a given B-tensor shape and encoding time
considering that gmax ≤ 75mT/m and slew rate ≤ 125mT/m/s. The latter is the sum of both encoding periods (τ1 + τ2),
before and after the 180 degree radiofrequency pulse.

the level of the second-order velocity cumulant
〈vi(t)vj(t′)〉 = 2Dijδ(t − t′) defining the diffusion
tensor Dij . Hence, the signal

S[q(t)] =
〈
ei

∫
dtq(t)·v(t)

〉
= e−

∑
ij BijDij (1)

gets reduced to a function of the 3 × 3 symmetric
tensor B = (Bij):

Bij =

∫ TE

0

qi(t) qj(t) dt, with

qi(t) =

∫ t

0

gi(t
′) dt′, and b =

∑
i

Bii ,

(2)

where the trace of B is the conventional b-value2,
and g(t) = dq/dt is the diffusion gradient wave-
form used to generate the trajectory. Hence, for
a medium (e.g., a voxel) comprised of multiple
non-exchanging Gaussian-diffusion compartments
(in general, anisotropic, such as in the SM), the
B-tensor fully parametrizes the measurement.

The number of nonzero eigenvalues in B reflects
how many dimensions of the anisotropic Gaussian
diffusion are being probed simultaneously. In this
work, we focus on axially symmetric B:

Bij(b, β, û) = b

(
β uiuj +

1− β
3

δij

)
(3)

that are parametrized by the overall scale (the b-
value), the unit vector û along the symmetry axis,
and the shape parameter β (Fig. 2a). Compared
to conventional dMRI, the extra degree of free-
dom β represents the B-tensor shape, e.g., β = 1
for linear encoding (a single nonzero eigenvalue),
β = 0 for spherical encoding (isotropic B-tensor),
and β = − 1

2 for planar encoding (two nonzero
eigenvalues). Here δij is the Kronecker symbol (the
unit matrix).

The encoding time required for the gradient
waveforms corresponding to a given B-tensor de-
pends on its shape and b-value. Figure 2b shows
the minimum diffusion encoding times for {b, β}
combinations given specific hardware constraints
(more details in Section 3.1). Isotropic weighting
and large b-values demand more encoding time if
gradient hardware constraints are kept constant.

2.2. SM for multidimensional dMRI

Multiple approaches (Kroenke et al., 2004; Jes-
persen et al., 2007, 2010; Fieremans et al., 2011;
Zhang et al., 2012; Sotiropoulos et al., 2012; Jensen
et al., 2016; Jelescu et al., 2016a; Kaden et al., 2016;
Reisert et al., 2017; Novikov et al., 2018; Veraart
et al., 2018) to model the physics of water diffusion

2We use the “microstructure units”, i.e., µm and ms, throughout the paper. In such units, the diffusion weighting,
b = 1000 s/mm2 = 1 ms/µm2. In these units, free water diffusivity at body temperature Dw ≈ 3µm2/ms.
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in WM had relied on similar assumptions. This led
to the unifying framework dubbed Standard Model
(SM) of diffusion in WM as formulated in (Reisert
et al., 2017; Novikov et al., 2018, 2019).

Consider an elementary fiber segment or fiber
fascicle, which is a local bundle of aligned sticks
with the extra-neurite space surrounding them.
The signal from such fascicle oriented along the
unit vector n̂, has contributions from two axially
symmetric non-exchanging Gaussian compartments
aligned along n̂, Fig. 1:

• Stick compartment, with signal fraction f ,
representing axons and possibly other elon-
gated cells such as glial processes. Sticks are
zero-radius cylinders, where diffusion occurs
only along the cylinder axis with diffusivity
Da, such that the diffusion tensor is Da ninj .

• Zeppelin compartment reflecting hindered dif-
fusion in the extra-axonal space. Its diffu-
sion tensor eigenvalues are the parallel and

perpendicular diffusivities D
‖
e and D⊥e , such

that the tensor is ∆e ninj + D⊥e δij , where

∆e = D
‖
e −D⊥e .

• Free water compartment with signal frac-
tion fw and fixed isotropic diffusivity Dw =
3µm2/ms is optionally added to account for
CSF partial volume contributions. We will
include it in our analysis.

Applying Eqs. (1) and (3) to each compartment
above, and using

∑
ij

(λninj + µδij)

(
βuiuj +

1− β
3

δij

)

= βλ

[
ξ2 − 1

3

]
+
λ

3
+ µ ,

where ξ = n̂·û is the cosine of the angle between the
symmetry axes of the kernel and of the B-tensor,
we obtain a fascicle’s response function (or a re-
sponse kernel) to the measurement encoded by the

B-tensor:

K(b, β, ξ) = f exp
[
−bDa

(
β(ξ2 − 1

3 ) + 1
3

)]
+(1− f − fw) exp

[
−bD⊥e − b∆e

(
β(ξ2 − 1

3 ) + 1
3

)]
+fw exp

[
−bDw

]
.

(4)
Voxels contain not one but a collection of fiber

segments whose orientation is given by a probabil-
ity distribution on the sphere P(n̂), dubbed fiber
orientation distribution function (ODF). Thus, the
SM signal becomes the convolution of the kernel
and the ODF on the unit sphere3:

S(B)=s0

∫
S2

dn̂P(n̂)K(b, β, n̂ · û) , (5)

where s0 ≡ S(B)|B=0 is the non-weighted signal,
and P(n̂) is normalized to the unit probability,∫
S2 P(n̂) dn̂ = 1.

The SM ODF is represented via a spherical har-
monic (SH) decomposition:

P(n̂) ≈ 1 +

`max∑
`=2,4,...

∑̀
m=−`

p`m Y`m(n̂) , (6)

where Y`m(n̂) are the SH basis functions conven-
tionally normalized to

4π

∫
dn̂Y ∗`m(n̂)Y`′m′(n̂) = δ``′δmm′ ,

p`m are the SH coefficients (only even ` are nonzero
due to the time-reversal symmetry of the Brownian
motion and p00 =

√
4π), and `max is the maximum

order in the expansion (typically 4–8, depending on
the SNR and the maximal b).

The ODF form (6) is chosen due to a number
of reasons. First, the SH basis is standard for func-
tions on a sphere, and it does not give preference
to any particular functional form of the ODF (since
there are currently no justifiable empirical ODF
models). Second, this basis realizes the angular-
radial connection in the q-space (Novikov et al.,
2018) (the successive terms in the Taylor expansion
of Eq. (5) in the powers of qi1 . . . qi` ∼ b`/2 corre-
spond to the sensitivity to SH up to order `). Third,
the convolution on a sphere becomes a product in
the SH basis, as discussed below. As a result, the

3Technically, the convolution is defined on the rotation group SO(3), equivalent to the 3-dimensional unit sphere S3. How-
ever, due to the fiber fascicle’s axial symmetry, the SO(2) rotation around its axis can be factored out, and the convolution
becomes over the factor group SO(3)/SO(2) equivalent to the 2-dimensional unit sphere S2, ||n̂|| = 1 (Healy et al., 1998).
Henceforth, as in (Novikov et al., 2018), we normalize the measure on S2, dn̂ ≡ sin θ dθ dφ/4π, such that

∫
dn̂ = 1.
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free parameters of the SM are the compartmental
diffusivities and water fractions of the kernel, and
the fiber ODF coefficients p`m.

When referring to the SM, unless specified oth-
erwise, it is implied that kernel and ODF param-
eters are estimated directly from the data without
constraints on parameters (Novikov et al., 2019).
Kernel parameters provide important tissue mi-
crostructural information, and have shown poten-
tial clinical relevance as they are sensitive to specific
disease processes such as demyelination (Fieremans
et al., 2012; Jelescu et al., 2016b) (D⊥e ), axonal loss
(Fieremans et al., 2012) (f) or beading (Lee et al.,
2020) (Da). Additionally, we anticipate that ODF
parameters (p`m) can be used for a more accurate
tractography since the kernel is estimated at each
voxel locally, rather than being averaged over white
matter tracts as in model-free deconvolution meth-
ods (Tournier et al., 2004).

2.3. ODF-kernel factorization and rotational in-
variants

The Fourier transform diagonalizes the convolution
operation. In other words, it provides a basis where
convolutions become products. The Fourier basis
on a sphere is the SH basis (6). In this basis, the
convolution in Eq. (5) becomes a product:

S`m(b, β) = s0 p`mK`(b, β) . (7)

Here

K`(b, β) =

∫ 1

0

dξK(b, β, ξ)P`(ξ) (8)

are the projections of the kernel onto the Legen-
dre polynomials P`(ξ) (proportional to m = 0 SH),
such that

K(b, β, n̂·û) =
∑

l=0,2,...

(2l+1)K`(b, β)P`(n̂·û) . (9)

Indeed, substituting Eqs. (6) and (9) into Eq. (5),
and using the SH addition theorem

P`(n̂ · û) =
4π

2l + 1

∑̀
m=−`

Y ∗`m(n̂)Y`m(û) ,

one gets the signal SH coefficients (7). Since the
fascicle is axially symmetric and is probed by an
axially symmetric B-tensor, the m 6= 0 SH coeffi-
cients K`m of the kernel vanish.

To remove the dependence on the choice of
the physical basis in three-dimensional space (via
m = −`...`), the rotational invariants of the signal
and ODF are employed:

S2
` (b, β) =

1

4π(2`+ 1)

∑̀
m=−`

|S`m(b, β)|2,

p2` =
1

4π(2`+ 1)

∑̀
m=−`

|p`m|2.

(10)

The above normalization is chosen such that: i)
p0 = 1, since the integral of the ODF over the
sphere equals 1; ii) the remaining ODF invari-
ants characterizing anisotropy satisfy 0 ≤ p` ≤ 1.
It follows that for ` ≥ 2 an isotropic ODF has
p` = 0 while a delta-function on a sphere (a per-
fectly aligned fiber tract) has all p` = 1. Hence, p`
are the “partial” ODF anisotropy metrics at each
degree `.

From Eqs. (7) and (10), one can relate the sig-
nal rotational invariants to the kernel parameters:

S`(b, β) = s0 p`K`(b, β), ` = 0, 2, ... . (11)

This allows separating the parameter estimation in
two steps {S(b, β, û)} → {S`(b, β)} → kernel, with-
out loss of information and having to estimate only
a few p` from the ODF. The above treatment gener-
alizes earlier factorization approach (Reisert et al.,
2017; Novikov et al., 2018) from LTE to arbitrary
axially-symmetric B-tensors.

2.4. Supervised machine learning regression

Unlike conventional parameter estimation ap-
proaches which rely on an analytical forward model,
e.g. maximum likelihood, data-driven ML regres-
sions learn the mapping from noisy measurements
to model parameters. This is done by applying a
sufficiently flexible regression to training data gen-
erated with the forward model of interest, which
generally contains noise to mimic realistic scenar-
ios. In the SM context, this approach was pioneered
by Reisert et al. (2017). Interestingly, Coelho et al.
(2021b) showed that the learned mapping becomes
smoother with increased levels of noise, effectively
removing high order features that would be ob-
tained in the case of noise-free mapping. Thus, for
typical SNR values found in clinical dMRI experi-
ments, the optimal regression, i.e. minimizing MSE
of the training data, can be achieved already by a

6



cubic polynomial (suggested by Reisert et al. (2017)
for LTE), as it captures all relevant degrees of free-
dom in the data represented by the set of S`.

A major advantage of polynomial regression
over neural networks is that it is a linear opti-
mization problem and the training can be com-
puted much faster without the risk of local min-
ima. Coelho et al. (2021b) provided fast analytical
equations to compute not only optimal regression
coefficients but also the MSE over a distribution of
values for all model parameters with a given acqui-
sition protocol and noise level. This makes MSE a
good metric for comparing the performances of dif-
ferent protocols and thus, a better objective func-
tion than the CRB for optimal experimental design.

3. Methods

3.1. Optimal experimental design

To select the experimental design that exploits our
parameter estimation the most, we look for the set
of measurements that minimize the RMSE in the
parameters estimates:

RMSE =
√

(bias)2 + variance , (12)

where
√

variance typically scales with the noise
level. By minimizing Eq. (12) we are simultane-
ously aiming for increased accuracy and precision.

The metric for quantifying the goodness of a
protocol was: RMSEobj = RMSEf + 1

3RMSEDa
+

1
3RMSE

D
‖
e

+ 1
3RMSED⊥

e
+RMSEfw , where each pa-

rameter is normalized by its range. This assured
an even sensitivity to all parameters was kept. In-
dividual MSE values were computed analytically as
in Coelho et al. (2021b), based on the measured
shells, the noise level, and the moments of the train-
ing data distribution. This accurately captures how
experimental design and SNR affect our parameter
estimates over a distribution of values.

We assume that the acquisition time is fixed and
defined by the user. In this work we focus on 15-
minute scan times. Thus, the optimization frame-
work had to find the best way to fill the available
time without violating hardware limitations such as
maximum gradient amplitude and slew rate. Shells
of uniformly distributed directions were assumed to
be part of the optimal acquisition since it has been
shown that measurements grouped into shells in-
crease precision (Coelho et al., 2019a). For each

shell, the optimization framework selected: diffu-
sion weighting b, the B-tensor shape parameter β,
number of directions, and TE.

Using the framework proposed by Sjölund et al.
(2015); Szczepankiewicz et al. (2019) we gener-
ated a library of minimum encoding times as a
function of the {b, β} combination, see Fig. 2b.
These were used to compute how much encoding
time was needed for each specific B-tensor on each
scanner. The optimization handled the trade-off
between adding many shorter high-SNR measure-
ments or fewer longer low-SNR ones. The TE was
constrained to be equal for all shells to factor out
T2 dependence in the analysis. Thus, the overall
TE, and the SNR of the dataset, was determined
by the longest diffusion waveform.

We included conventional DKI shells (LTE, b =
0− 1− 2ms/µm2, (Sotiropoulos et al., 2013; Casey
et al., 2018; Alfaro-Almagro et al., 2018)) as fixed
into our protocols. This enables future comparisons
against standard DKI-derived maps and increases
the flexibility of the data analysis. The maximal
b-value that the optimizer could explore was set to
bmax = 10ms/µm2 and bmax = 8ms/µm2 to accom-
modate our two scanners described below. Stochas-
tic optimization (Zelinka, 2004) was used to navi-
gate the high-dimensional and non-convex protocol
landscape.

3.2. In vivo dMRI experiments

Twenty normal volunteers (23-66 years old, 10
males - 10 females) underwent brain diffusion MRI
on Siemens Magnetom Prisma and Skyra 3T sys-
tems (80mT/m and 40mT/m gradient systems, re-
spectively), using a 20-channel head coil. The local
Institutional Review Board approved the study and
informed consent was obtained and documented
from all participants. Maxwell-compensated asym-
metric waveforms (Szczepankiewicz et al., 2019)
were employed in all acquisition protocols using an
in-house diffusion sequence with EPI readout (Ve-
raart et al., 2019b) and with a single TE. Isotrop-
ically distributed directions were used at different
combinations of diffusion weightings and encodings
(see Fig. 3 for a representation of both protocols).
Both protocols took 15 minutes to acquire for each
repetition.

On the Skyra scanner, scan(1)-rescan(2) of this
protocol was acquired with TR/TE=6700/127ms

(SKYRA
(1)
127 and SKYRA

(2)
127), while on the Prisma

scanner, scan(1)-rescan(2) was acquired with

7



TR/TE=5300/92ms (PRISMA
(1)
92 and PRISMA

(2)
92 )

in addition to one scan(3) matching the Skyra

protocol with TR/TE=6700/127ms (PRISMA
(1)
127).

Imaging parameters: resolution: 2.0mm isotropic,
in-plane FOV: 220mm, GRAPPA and SMS accel-
eration factors: 2, PF = 6/8. Subjects were taken
out of scanner and repositioned between scans.

3.3. Image pre-processing

Magnitude and phase data were reconstructed using
projection onto convex sets (POCS) reconstruction
(Haacke et al., 1991). Then, a phase estimation
and unwinding step preceded the denoising of the
complex images (Lemberskiy et al., 2019). Denois-
ing was done using the Marchenko-Pastur principal
component analysis method (Veraart et al., 2016).
By preserving only the significant principal compo-
nents in the signal, this method reduces the noise
with minimal smoothing. An advantage of denois-
ing before taking the magnitude of the data is that
Rician bias is reduced significantly.

Data was subsequently processed with the DE-
SIGNER pipeline (Ades-Aron et al., 2018). De-
noised images were corrected for Gibbs ringing ar-
tifacts (Kellner et al., 2015; Tournier et al., 2019),
based on re-sampling the image using local sub-
voxel shifts. These images were rigidly aligned and
then corrected for eddy current distortions and sub-
ject motion simultaneously (Smith et al., 2004).
A b = 0 image with reverse phase encoding was
included for correction of EPI-induced distortions
(Andersson et al., 2003).

3.4. Parameter estimation

We used the regression method described in Sec-
tion 2.4 where the SM parameters are estimated
from the rotational invariants, employing the cu-
bic polynomial regression of Reisert et al. (2017).
Compared to fitting directly the diffusion-weighted
signals, this has the advantage of reducing the di-
mensionality of the problem without loss of gen-
erality, since rotational invariants are model-free
and capture all the SM microstructural informa-
tion in a few variables. For SNR ranges acces-
sible with diffusion MRI there is no gain for us-
ing a more complex regression such as neural net-
works (cf. Coelho et al. (2021b)). Furthermore,
polynomial regressions are convex problems which
are faster to solve than other types of machine
learning regressions. The rotational invariants were

estimated from the diffusion-weighted images us-
ing linear least squares since these had minimal
bias after denoising complex images. All codes
for SM parameter estimation were implemented
in MATLAB (R2021a, MathWorks, Natick, Mas-
sachusetts). These are publicly available as part
of the SMI (standard model imaging) toolbox at
https://github.com/NYU-DiffusionMRI/SMI. DKI
parameters were estimated with weighted linear
least-squares (Veraart et al., 2013) on the DKI
shells (∼ 40% of the acquired data).

For each kernel parameter x, the coefficients of
variation COV = σ/µ were computed from the two
repetitions x1,2 we had for each protocol, where the
mean and standard deviation were estimated as:
µ̂ = 1

2 (x1 +x2), σ̂ =
√
π
2 |x1−x2|. The, COV values

were averaged over either voxels or over ROIs.

4. Results

4.1. Protocol optimization

Figure 3a shows a representation of the optimized
protocols, with b-values, b-shapes and number of
directions for each shell. The proposed optimal ac-
quisitions were similar for both scanners (40 and
80mT/m maximum gradient strength). After fix-
ing DKI shells into the optimization problem (LTE,
b = 0, 1, 2ms/µm2), we see that three complemen-
tary shells arise:

• (A) a high-b LTE shell (b ≥ 5ms/µm2, β=1);

• (B) an intermediate/high-b highly anisotropic
B-shape shell (3.5 ≤ b ≤ 5ms/µm2, 0.75 ≤
β≤0.8);

• (C) an intermediate-b STE shell (b =
1.5ms/µm2, β=0).

These locations in the acquisition space provide
functionally independent forms for the rotational
invariants while maintaining a sufficiently high
SNR. Figure 3b shows how the positions of the non-
DKI shells vary as SNR increases.

Non-LTE data contributes significantly to pa-
rameter precision. As an example, Fig. 3c shows
the normalized and averaged RMSE of all model
parameters after fixing the DKI shells and high-b
LTE shell. Here, we move the position of the shell B
in the full {b, β} acquisition space. We remove shell
C, and keep TE and number of directions fixed for
simplicity. It can be appreciated that small mod-
ifications will not affect the protocol significantly
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Figure 3: a) Results from the optimization search for the two scanners. Each red dot represents a shell with its unique combi-
nation of b-value, B-tensor shape, and number of measurements. Although these optimizations considered different hardware
constraints, they look qualitatively similar. In both cases DKI shells were fixed and the optimization selected the remaining
ones (A, B, and C). Black arrows indicate the decreased b-value for the high-b LTE shell to avoid gradient duty cycle issues.
b) Optimal protocols for different SNR levels. The positions of shells A and B move towards higher diffusion weightings as the
SNR increases. c) Landscape of the RMSE objective function (average over parameters normalized with the parameter range)
for the position of the shell B, after fixing DKI shells and shell A. Shell C is not present for simplicity, to illustrate the RMSE
improvement due to going beyond the linear encoding.
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since the RMSE landscape is very flat in their neigh-
borhood. However, the sharp transition of the av-
eraged RMSE as shell B moves away from LTE in
Fig. 3c makes evident that after adding high-b LTE
data to the DKI shells, non-LTE shells are the most
informative.

4.2. Volunteer experiments

Representative WM parametric maps are shown in
Fig. 4 for a 25 year old female subject. Maps are
visually reproducible for both TEs, even when com-
paring PRISMA vs SKYRA. Reproducibility on
both scanners and between scanners showed sim-
ilar results but the best COVs were seen on the
Prisma due to better performing gradients provid-
ing a higher SNR due to a shorter TE (see represen-
tative histograms of WM voxels in Fig. 5 and ROI
average values in Fig. 7). Here, voxelwise COVs

were between 5 − 10% for f , Da, D⊥e , and p2. D
||
e

showed the smallest COV (∼ 3%), possibly due to
a combination of having small variability and being
the hardest parameter to estimate, making it the
most influenced by the training data (Coelho et al.,
2021b). Note that fw is not only a noisy parameter
but it also has small values, leading to very high
relative variations (∼ 40%).

The COV of SM parameters are comparable to
the ones from FA estimated from the DKI subset.
This is encouraging since FA is known to be re-
producible due to being a much simpler parameter
to measure and estimate (intra-scanner voxelwise
COV ' 7− 13%, ROI COV ' 1− 4%, see Fig. 6).

Interestingly, SM voxelwise COV values from
noise propagation simulations agreed with the mea-
sured ones, see Fig. 6c. This agreement implies
that the main factor hindering parameter repro-
ducibility is measurement noise.

5. Discussion

5.1. Reproducibility

Biophysical modeling methods for clinically feasi-
bly dMRI protocols must provide reliable paramet-
ric maps to achieve adoption in clinic and clinical
research. For the first time, we assessed the re-
producibility of unconstrained estimation of Stan-
dard Model parameters in human white matter. We
proposed a framework to optimally design the ac-
quisition protocol by selecting the combination of

b-values and B-tensors that simultaneously maxi-
mize accuracy and precision for SM parameter esti-
mation over a range of biologically plausible values.
The optimized protocol, tailored to specific hard-
ware and acquisition time constraints, combined
with robust machine learning-based parameter es-
timation, gives us a favorable position to study re-
producibility.

We report coefficients of variation of SM pa-
rameters around ' 5 − 10% at the voxel-level and
around ' 1−4% for ROI means, which are actually
comparable to the ones for FA (see Fig. 6). Noise
propagation experiments using the estimated pa-
rameters from the WM ROIs showed our predicted
COVs from simulation are similar to the ones from
experiment (±50%), see Fig. 6c. Motion and im-
age artifacts contribute to differences with the noise
propagation predictions. Nonetheless, approximate
COV estimates further support the use of the ana-
lytically predicted MSE as a quality metric for op-
timal protocol design.

The obtained COVs are encouraging since pre-
cise and unconstrained SM estimation has remained
elusive for clinically feasible protocols. Unlike pre-
vious biophysical modeling works (Fieremans et al.,
2011; Zhang et al., 2012; Jelescu et al., 2016a;
Kaden et al., 2016) , we remove all parameter con-
straints. This makes parameter estimation more
challenging but reduces biases due to arbitrary con-
straints and provides additional contrasts that may
aid in detecting pathology. Combining optimal ac-
quisition protocols and robust parameter estima-
tion allowed us to obtain SM parameters from 15-
minute scans, thereby enabling brain tissue mi-
crostructure mapping in clinical settings.

5.2. Optimal protocols

The 15-minute optimized acquisition protocols were
similar for both scanners albeit with a different TE
due to the different maximum gradient strengths
for both scanners. After fixing the two low-b LTE
shells on each protocol (b = 0−1−2ms/µm2, β = 1)
to make them suitable for DTI and DKI analysis,
similar complementary shells arose from the opti-
mization for both scanners (see Fig. 3): A high b
LTE shell, an intermediate b - highly anisotropic b-
shape shell, and a low b STE shell. It is important
to note that the optimal locations for the non-DKI
shells depend on the SNR as shown in Fig. 3b. Re-
lated work from Lampinen et al. (2020) optimizing
for minimal CRB also revealed the use of non-LTE
low b-shells to achieve complementary information
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Figure 4: Columns show different SM parameter and fractional anisotropy (FA) maps for a 25 year old female control subject.
Color maps of SM WM parameters are plotted on top of a T2-weighted image. Each row contains a different repetition, labeled

as SCANNERrepetition
TE . The first two rows were computed at a TE=92ms (protocol optimized for the PRISMA scanner) while

the bottom three rows were computed at a TE=127ms (protocol optimized for the SKYRA scanner).
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Figure 5: Voxel-wise reproducibility of Standard Model parameters and FA for the PRISMA scan-rescan. The bottom row
shows the prior distributions used in the machine learning regression. Uniform distributions were chosen for all diffusivities
and p2. Since 0 ≤ f + fw ≤ 1, 0 ≤ f ≤ 1, and 0 ≤ fw ≤ 1, the less informative prior is assuming the sum of water fractions
being uniformly distributed between 0 and 1. This makes their individual distributions triangular.

from DTI/ DKI, i.e. β = 0.1− 0.6. However, their
work also varies TE which limits direct comparison
since T2 contrast is also involved.

5.3. Parameter estimates

The employed machine learning parameter estima-
tion (Reisert et al., 2017) is very fast, even for the
training step, since the formulation presented by
Coelho et al. (2021b) only needs inverting a matrix
with averages of the model measurements evaluated
over the prior distribution. As the ground-truth of
all SM-parameters are generally lacking, especially
for pathology, we used uninformative prior distribu-
tions both for parameter estimation and MSE quan-
tification during the protocol optimization. Such
implementation is a significant improvement upon
previous works that typically rely on either hard
constraints or soft tissue priors (Fieremans et al.,
2011; Zhang et al., 2012; Kaden et al., 2016).

All SM-parameter values are found to be consis-
tent between subjects (see Fig. 7). While ground
truth values are unavailable for in vivo dMRI ex-
periments, their values are plausible and agree well
with prior studies. The axonal water fraction f

showed the largest values in regions with the most
densely packed axons while fw only has large val-
ues close to the ventricles likely due to CSF partial
volume. The major WM ROIs show Da values cen-
tered at ∼ 2.3µm2/ms for the TE=92ms data, in
agreement with measurements using more extensive
acquisitions involving high diffusion weighted PTE
done by Dhital et al. (2019), and with high b LTE
(Veraart et al., 2019a), yet slightly lower than those
reported by (Howard et al., 2020; Nilsson et al.,

2021). Furthermore, Da > D
||
e in the majority of

voxels, agreeing with gadolinium-based contrast ex-
periments in the rat corpus callosum (Kunz et al.,
2018), though this observation depends on the ROI
and both values are generally close to each other.

5.4. Limitations

As we optimized the measurements for a given scan
time, SNR levels may still be in an intermedi-
ate regime where some information from the prior
“leaks” into the parameter fits. This may be espe-
cially the case for the TE=127ms data and for the

noisiest parameters: D
||
e and fw. Of note, both Da

and D
||
e become smaller for the TE=127ms data,
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Figure 6: Coefficients of variation (COV) for all SM parameters and FA (computed from the DKI shells). a) shows measured
COVs for voxel reproducibility. b) Shows COVs for the means of the main WM ROIs. Note that due to its low value, free
water fraction has a large COV since this is a relative error metric. c) Comparison of the measured voxelwise COVs against
the predicted ones through a noise propagation experiment.
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Figure 7: Box plots showing mean values for all subjects for all SM parameters for different WM ROI.Biological variability of
the different SM parameters is observed across the WM. Water fractions and dispersion (p2) are, as expected, different between
protocols of different TE due to different T2-weighting. However, we also observe a small decrease of the parallel diffusivities
at larger TE values.

potentially due to the decreased SNR and reduced
number of measurements, which results in estimates
getting closer to the mean of the training data. In
such regime, increased precision comes at the cost of
bias. Nonetheless, both scan protocols are still able
to capture reproducible differences between distinct
WM regions for all parameters, Fig. 7. Hence, de-
spite the potential introduction of bias for given pa-
rameters, the proposed protocols and fitting proce-
dures enable capturing biological variability across
WM regions and potentially also variability due to
pathology.

Due to duty cycle gradient heating, LTE high-b
shells were acquired at b = 5.5 ms/µm2 rather than
b = 8 ms/µm2 for the Prisma and at b = 5 ms/µm2

rather than b = 7 ms/µm2 for the Skyra, as initially
suggested by the protocol optimization to avoid in-
creasing the TE (see Fig. 3a). Noise propagation
experiments showed such change did not signifi-
cantly deteriorate the quality of the protocol. This
happens because at high-b the location of shell A
is already independent from the rest and the MSE
becomes very flat around it, see a similar situation
for shell B in Fig. 3c.

Overall, the protocol optimization is a high-
dimensional problem which has multiple local min-

ima. Our approach showed robust estimations of
global optima in a toy function of similar dimen-
sionality and complexity. We do not explore B-
tensor shapes without axial symmetry (inner part
of the triangle in Fig. 2a). Releasing this con-
straint would increase the space of acquisitions but
not necessarily increase precision in the parame-
ter estimation, as shown previously for the cumu-
lant expansion parameters Coelho et al. (2019b).
Therefore, we constrained B-tensors to be axially
symmetric, reducing the dimensionality of the opti-
mization problem. Future work will explore repro-
ducibility of optimal acquisitions with varying TE
to simultaneously capture compartmental T2 val-
ues, as it was proposed by Veraart et al. (2018);
McKinnon and Jensen (2019) and later assessed by
Lampinen et al. (2020).

6. Conclusion

This work provided optimal protocols for WM dif-
fusion modeling and studied the reproducibility of
the unconstrained SM in clinical settings. For this,
we coupled optimal experimental design with ro-
bust parameter estimation and proposed a general
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framework to obtain the protocol that minimizes
the RMSE of the Standard Model parameters.

In vivo experiments performed in twenty nor-
mal subjects showed . 10% COV for all voxel-wise
parameter estimates except free water fraction and
∼ 1 − 4% for ROI means, comparable to DKI de-
rived metrics. These are encouraging results that
may boost the application of WM biophysical mod-
eling into clinical research.

This work reveals that three diffusion measure-
ment settings provide complementary information
to DKI: high b LTE, intermediate/high b- highly
anisotropic b-shape, and intermediate b STE. Fi-
nally, our framework is flexible and can be adapted
to different acquisition constraints (e.g. scan time,
resolution, hardware, etc). All processing codes
for the estimation of the Standard Model (SMI
toolbox) are available at https://github.com/NYU-
DiffusionMRI/SMI.
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