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Purpose: Biophysical tissue models are increasingly used in the interpretation of dif-
fusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain 
microstructural changes. However, it has been shown recently that, in the general 
Standard Model, parameter estimation from dMRI data is ill‐conditioned even when 
very high b‐values are applied. We analyze this issue for the Neurite Orientation 
Dispersion and Density Imaging with Diffusivity Assessment (NODDIDA) model and 
demonstrate that its extension from single diffusion encoding (SDE) to double diffu-
sion encoding (DDE) resolves the ill‐posedness for intermediate diffusion weightings, 
producing an increase in accuracy and precision of the parameter estimation.
Methods: We analyze theoretically the cumulant expansion up to fourth order in b of 
SDE and DDE signals. Additionally, we perform in silico experiments to compare 
SDE and DDE capabilities under similar noise conditions.
Results: We prove analytically that DDE provides invariant information non‐acces-
sible from SDE, which makes the NODDIDA parameter estimation injective. 
The in silico experiments show that DDE reduces the bias and mean square error of 
the estimation along the whole feasible region of 5D model parameter space.
Conclusions: DDE adds additional information for estimating the model parameters, 
unexplored by SDE. We show, as an example, that this is sufficient to solve the pre-
viously reported degeneracies in the NODDIDA model parameter estimation.

Correction added after online publication 22 March 2019. Due to a publisher’s error, not all comments were addressed prior to online publication. The spacing 
of the equations has been adjusted to accommodate superscripts and subscripts and to align equation symbols where present. An errant “g” was removed from 
equation 23. Table 1 was updated to adjust shading for data grouping. 
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1 |  INTRODUCTION

Diffusion MRI (dMRI) has been established as an invalu-
able tool for characterizing brain microstructure in vivo 
and non‐invasively. Diffusion weighted images (DWIs) 
are sensitive to the random displacement of water mole-
cules within a voxel,1 probing tissue on scales consider-
ably lower than image resolution.2 Diffusion MRI provides 
the aggregate signal from the distribution of components 
within a voxel. By measuring across multiple diffusion ori-
entations and weightings, information about the underlying 
tissue architecture can be unravelled. The ability to detect 
small alterations in brain tissue is a key factor when de-
veloping biomarkers for early stages of neurodegenerative 
diseases.3 Various approaches to derive information from 
Diffusion Weighted Images (DWI) have been proposed in 
the literature.4–8 Most direct approaches, such as Diffusion 
Tensor Imaging (DTI),4 are just aimed at describing the 
main MRI signal characteristics (signal representations,9). 
However, the quest for specific information on tissue 
microstructural integrity inspired the development of 
biophysical tissue models.10–13 By assuming certain char-
acteristics for the tissue, such as the type of constituents, 
their geometry and physical properties, these models may 
allow the extraction of more specific microstructural in-
formation than signal representations, as long as these 
assumptions are at least approximately satisfied by the 
tissue. Nevertheless, the validity of these results relies on 
how accurate the model is for the tissue under study. The 
widely used Neurite Orientation Dispersion and Density 
Imaging (NODDI)14 model fixes the diffusivity values of 
the compartments present in the voxel to specific values. 
NODDI’s assumptions have been shown to be incompat-
ible with data from spherical tensor encoding (STE) in 
Lampinen et al15 and it has been argued to introduce bias 
in the estimation of the remaining model parameters.16 
To overcome this limitation, Jelescu et al17 extended the 
model by adding the diffusivities to the estimation rou-
tine, and removing the CSF compartment. They dubbed 
it NODDIDA (NODDI with Diffusivity Assessment). 
While this approach eliminated some flawed assump-
tions made by NODDI, this led to multiple possible solu-
tions that describe the signal equally well. This reflects 
that the estimation problem is ill‐posed or, at least, ill‐ 
conditioned, and is usually stated as the existence of de-
generated model parameter sets. Recent work by Novikov  
et al showed that this degeneracy is intrinsic to the so‐called 
Standard Model (SM),18 of which NODDIDA is a special 

case. They show that choosing the correct solution is chal-
lenging even with the use of high b‐value data, although 
Jespersen et al19 obtained stable estimations in ex‐vivo brain 
tissue using extremely high b‐values (15 ms/μm2). Reisert  
et al20 proposed a supervised machine learning approach 
trained with the expected value of the Bayesian posterior, 
which, by definition, disregards the possible multimodality 
of the distribution. Furthermore, it was trained on simu-
lated data with the prior assumption of similar traces for 
the intra‐ and extra‐axonal diffusivities.

Most of the dMRI techniques have been developed for an 
acquisition performed within a Single Diffusion Encoding 
(SDE) framework. Since Stejskal and Tanner developed the 
Pulsed Gradient Spin Echo (PGSE) sequence,21 there have 
been many works aimed at maximizing the information that 
can be obtained from a dMRI experiment by exploring dif-
ferent acquisition protocols.22,23 One of the many modifica-
tions proposed to the magnetic gradient waveforms involves 
the addition of multiple gradient pairs. Particularly, a scheme 
that has lately gained popularity is termed double diffusion 
encoding (DDE),24 first proposed by Cory et al.25 The term 
DDE refers to any sequence consisting of two consecutive 
diffusion encodings. It has been shown that DDE, as well 
as other multiple encoding schemes, has the potential to 
provide new information that is not immediately accessible 
with SDE.26 Many groups focused on developing methods 
for extracting microstructural information based on this 
scheme.27–30 Jespersen et al31 showed that in the low‐diffu-
sion‐weighting limit, the information extracted from single 
and multiple diffusion encodings is the same. A recently 
developed dMRI framework based on q‐space trajectory 
encoding (i.e. multidimensional diffusion encoding) was 
proposed to probe tissue in ways not accessible by SDE.32 
For tissues comprised of multiple Gaussian compartments 
(MGCs) any q‐space trajectory is equivalent to a second 
order b‐tensor, which generalizes the concept of b‐value. 
In such systems SDE and DDE are fully specified by b‐ten-
sors, with one and two non‐zero eigenvalues, respectively, 
and are also called linear tensor encoding (LTE) and planar 
tensor encoding (PTE), in case of DDE with perpendicular 
directions. Lampinen et al15 have analyzed the advantages 
of a multidimensional encoding over SDE NODDI. They 
proved that extending the acquisition increases the accuracy 
in quantifying microscopic anisotropy. However, it has not 
been fully explored, from the point of view of fitting a bio-
physical model to noisy measurements, if single or multiple 
encodings can provide us with more precise model parameter 
estimates (cf.29,30). Recently, the advantages of combining 
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linear with planar or spherical tensor encoding to address the 
degeneracy and increase the precision of parameter estima-
tion have been investigated33–35 in both in silico and/or in 
vivo experiments. Their results show that the estimation pre-
cision is increased by the addition of these orthogonal mea-
surements. However, a theoretical background of why this 
happens is still missing.

This paper extends NODDIDA to a DDE scheme and as-
sesses the accuracy of estimators based on SDE and DDE 
measurements. This extension adds more degrees of freedom 
to the data acquisition (i.e. two diffusion encoding periods 
must be chosen). We hypothesized that DDE acquisition pro-
tocols containing both parallel and perpendicular direction 
pairs might outperform SDE protocols in informing biophys-
ical models. We investigated analytically the different infor-
mation provided by DDE and SDE in terms of their fourth 
order cumulant expansions. We examine the ill‐posed nature 
of the parameter estimation from SDE and present a theoreti-
cal explanation of why DDE resolves the degeneracy (except 
for the completely isotropic case κ = 0) without requiring 
extremely high diffusion weightings (e.g. b > 4 ms∕μm2). 
Additionally, we generated in silico dMRI measurements for 
acquisitions with different DDE configurations from a wide 
range of model parameter values covering the biologically 
feasible region of the 5D parameter space. Under similar 
experimental conditions, higher accuracy and precision is 
obtained for DDE combining parallel and perpendicular di-
rection pairs, outperforming SDE in most scenarios.

2 |  THEORY

2.1 | Biophysical model assumptions
A general assumption among multi‐compartment models rep-
resenting tissue microstructure is that water exchange between 
compartments is negligible for typical experimental time 
scales. The total signal is the weighted contribution from each 
compartment. The two‐compartment model dubbed Standard 
Model is the most general version of the typical models used 
for diffusion in neural tissue (see Ref.36). The stick compart-
ment (sometimes referred as intra‐neurite) represents axons, 
which are expected to be the main contributors to the restricted 
diffusion signal, and, possibly, dendrites and glial processes.19 
The inclusion of dendrites and glial processes is open to dis-
cussion36 and implies the assumption that in certain regimes 
(depending on e.g. diffusion time) they have similar diffusiv-
ity and T2 relaxation properties and directional distribution, a 
question which still has not been fully addressed (see partial 
discussion in Lampinen et al37). Sticks are zero‐radius cylin-
ders and model fibers in which diffusion is assumed to occur 
only along the fiber’s main direction as it was first proposed 
for water in neurites in Jespersen et al.13 Later, Nilsson et al38 
showed theoretically that typical axonal diameters cannot be 

resolved with SDE and gradient amplitudes available on clini-
cal scanners and thus, are indistinguishable from sticks. This 
was also confirmed experimentally in Veraart et al.39 The sec-
ond compartment represents the extra‐neurite space where dif-
fusion is hindered and is modeled as Gaussian anisotropic19 
(zeppelin compartment). A fiber segment is defined as the 
local bundle of aligned sticks with the extra‐neurite space 
surrounding them. Voxels are composed of a large number of 
fiber segments. The SM consists of the fiber segment signal 
model (i.e. kernel) with the diffusivities and water fraction as 
free parameters, together with a general fiber orientation dis-
tribution function (ODF), which could be represented by its 
spherical harmonics decomposition. One limitation of this 
model is that each fascicle within a voxel is assumed to have 
identical diffusion properties, leading to identical microstruc-
tural parameters.

Some other works consider a third compartment that rep-
resents the contribution from stationary water.11,40 However, 
recent works41 have concluded that the signal arising from 
this compartment can be neglected in most structures for the 
diffusion times used in the clinic and should only be con-
sidered in the cerebellum.42 Additionally, in its original ver-
sion, NODDI included an isotropic diffusion compartment to 
account for the presence of cerebrospinal fluid (CSF). This 
compartment was removed from NODDIDA for the sake of 
simplicity.17

Considering a general fiber ODF involves a large set of 
parameters, which can hinder their unambiguous estimation 
from the dMRI signal. The NODDIDA model,17 is essen-
tially the SM with the constraint that the fiber ODF must be 
a Watson spherical distribution (û) = f (û|�̂, 𝜅), with con-
centration parameter κ and main direction �̂ (see Figure 1). 
This cylindrically symmetric ODF is usually considered a 
sufficiently good and parsimonious model,43 especially for 
white matter regions without crossing fibers. Although being 
a simplified version of SM, NODDIDA still presents some 
degeneracy problems. Thus, in this work, we focus our anal-
ysis on the NODIDDA model.

2.2 | NODDIDA model with SDE
For a general SM, the signal from a SDE experiment, where 
the diffusion weighting b (i.e. b‐value) is applied in the diffu-
sion encoding direction n̂ = [nx, ny, nz]

t, is given by the con-
volution over the unit sphere18

 

where 

(1)SSDE(b, n̂)=S0 �
�2

(û)(b, n̂ ⋅ û)dSû,

(2)

(b, n̂ ⋅ û)= f exp
[
−bDa(n̂ ⋅ û)2

]
+ (1− f ) exp

[
−bD⟂

e
−bΔe(n̂ ⋅ û)2

]
,
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is the response signal (kernel) from a fiber segment oriented 
along direction û. Here, f is the (mainly) T2‐weighted stick 
volume fraction, Da the intra‐neurite axial diffusivity, and 
Δe = D

‖
e −D⟂

e
, with D

‖
e, D⟂

e
 the extra‐neurite diffusivities 

parallel and perpendicular to the fiber‐segment axis.36 These 
scalar kernel parameters (f, Da, D

‖
e, and D⟂

e
) provide impor-

tant tissue microstructural information, and have shown 
potential clinical relevance as they are sensitive to specific 
disease processes such as demyelination, axonal loss or 
inflammation.44–46

It has been recently shown that the parameter estimation is 
challenging under normal experimental conditions.17 There 
are two issues here. The first one is that fitting these mod-
els to noisy measurements is generally a non‐convex opti-
mization problem, potentially having several local minima 
of the objective function, requiring appropriate optimization 
algorithms. However, the existence of multiple local minima 
opens the door to a second, more serious, issue: the objec-
tive function can present multiple minima with equal or very 
similar values. In the presence of noise these minima are per-
turbed, making unstable which one becomes the global min-
imum. Jelescu et al17 evidenced this ill‐posedness issue for 
clinically feasible dMRI acquisitions in two particular cases. 
They showed that the estimated parameters from a collection 
of independently simulated dMRI measurements follow a 
bi‐modal distribution, despite being simulated from a single 
ground truth, and the presence of practically indistinguish-
able spurious minima in the objective function.

2.3 | Parameter estimation from SDE: An 
ill‐posed problem
A recent work by Novikov et al18 analyzed in detail this in-
verse problem for the unconstrained SM by reparametrizing it 
into its rotational invariants. They concluded that without any 
constraints on the ODF shape, it was not possible to estimate 
the kernel parameters with an acquisition sensitive up to order 
(b2). However, in this work we are interested in studying 
NODDIDA, where the ODF is given by a Watson distribution.

For intermediate diffusion weightings (i.e. b < 2.5 ms∕μm2) 
the dMRI signal is accurately represented by its 4th‐order cu-
mulant expansion47 (sensitive up to (b2) contributions). For 
SDE this expansion can be written as8

where S0 = S(b = 0) is the unweighted signal, D and W 
are the diffusion and kurtosis tensors, respectively, with 
D̄ = tr(D), as defined in Hansen et al48 and Einstein’s sum-
mation convention is implied. Let us consider a voxel with 
fibers oriented according to a Watson ODF. Following an 
analogous procedure as in Novikov et al18 we can expand the 
signal S(b, n̂) in Equation 1 up to order (b2) according to 
Equation 3. This gives a mapping between the biophysical 
parameter (BP) space and the diffusion kurtosis (DK) space, 
removing the dependence with the acquisition settings and 
simplifying the analysis of whether different sets of model 
parameters produce the same signal profile.

Due to the axial symmetry of the Watson distribution, 
the corresponding diffusion and kurtosis tensors can be ex-
pressed in terms of the projection, 𝜉 = n̂ ⋅ �̂, of the gradient 
direction to the main direction �̂ Jespersen et al49,1 : 

where h2(�, �) =
1

3
+

2

3
p2P2(�)  and  h4(�, �) =

1

5
+

4

7
p2P2(�)+

8

35
p4P4(�) 

are defined as in Jespersen et al49
P2(�) and P4(�) are the sec-

ond and fourth order Legendre polynomials, and p2, p4 the 
non‐zero second and fourth order coefficients of the spherical 
harmonics expansion of the Watson distribution: 

where F denotes the Dawson function.50 Using these equa-
tions, we can derive the relations between the BP and DK 
parameters that fully describe this axially symmetric environ-
ment, as done in Hansen et al51 for fully aligned fibers, but 
here for an arbitrary value of κ: 

(3)
log (S(b, n̂)∕S0)≈−bninjDij+

1

6
b2D̄2ninjnkn

�
Wijk�

=−bD(n̂)+
1

6
b2D̄2W(n̂),

(4)

D(𝜉)= (fDa+ (1− f )Δe) h2(𝜉,𝜅)+ (1− f )D⟂

e
,W(𝜉)D̄2

=3
[(

fD2
a
+ (1− f )Δ2

e

)
h4(𝜉,𝜅)+2(1− f )ΔeD⟂

e
h2(𝜉,𝜅)

+ (1− f )D⟂2
e
−D(𝜉)2

]
,

(5)
p2=

1

4

�
3√

�F(
√
�)
−2−

3

�

�
,

p4=
1

32�2

�
105+12�(5+�)+

5
√
�(2�−21)

F(
√
�)

�
,

F I G U R E  1  Diagram of the two compartments present in the 
NODDIDA tissue model with their corresponding diffusivities
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where D̄ = (2D
⟂
+ D‖)∕3. Taking the limit for κ→∞ we re-

cover the system of equations for parallel fibers presented in 
Hansen et al51 (Equation 12).

In Hansen et al48 the equivalent to the system in Equation 6 
is solved reaching two alternative equations for κ, ±(�) = 0, 
each giving possible solutions. This suggested that, in gen-
eral, there should be two solutions, one for each branch. 
However, this is not always the case, as illustrated in Table 1. 
We derive here an alternative expression of the solution in 
one equation only. First, Equation 6 can be reparametrized as: 

 After this substitution, Equation 6 can be expressed as a 
linear system of five equations for the 5 unknowns α, β, γ, δ 
and ε, decoupled into two independent smaller systems: 

Observe that the coefficients of matrices L and M
depend on κ. We will ignore for the moment that the five 
unknowns are not independent. The solution is unique as 
long as matrices L and M are invertible. This is the case 
when κ ≠ 0, since det L = p2 and det M = −

1

2
p2p4. In the 

limit of a fully isotropic medium (κ = 0) the system has 
only two independent equations, not allowing the recover-
ing of the kernel parameters without additional informa-
tion. By solving the two systems in Equation 8 we find 
expressions for α, β, γ, δ and ε that only depend on κ and the 
DK parameters (see Appendix A for solution). Those vari-
ables are actually defined from only four kernel parameters 
(Equation 7), resulting in the coupling equation 

(6)

D‖ = (fDa+ (1− f )Δe)h2(1,𝜅)+ (1− f )D⟂

e
,

D
⟂
= (fDa+ (1− f )Δe)h2(0,𝜅)+ (1− f )D⟂

e
,

1

3
W‖D̄2+D2

‖ = (fD2
a
+ (1− f )Δ2

e
)h4(1,𝜅)+2(1− f )ΔeD⟂

e
h2(1,𝜅)+ (1− f )D⟂2

e
,

1

3
W

⟂
D̄2+D2

⟂
= (fD2

a
+ (1− f )Δ2

e
)h4(0,𝜅)+2(1− f )ΔeD⟂

e
h2(0,𝜅)+ (1− f )D⟂2

e
,

5W̄D̄2

8
−

W
⟂

D̄2

4
−

W‖D̄2

24
+

(D
⟂
+D‖)2

4
= (fD2

a
+ (1− f )Δ2

e
)h4(

1√
2
,𝜅)+2(1− f )ΔeD⟂

e
h2(

1√
2
,𝜅)+ (1− f )D⟂2

e
,

(7)� = f Da+ (1− f )Δe, � = (1− f )D⟂

e
, � = fD2

a
+ (1− f )Δ2

e
,

� = (1− f )ΔeD⟂

e
, � = (1− f )D⟂2

e
.

(8)

�
D‖
D

⟂

�
=

�
h2(1,𝜅) 1

h2(0,𝜅) 1

��
𝛼

𝛽

�
= L

�
𝛼

𝛽

�
,

⎡⎢⎢⎢⎣

1

3
W‖D̄2+D2

‖
1

3
W

⟂
D̄2+D2

⟂

5W̄D̄2

8
−

W
⟂

D̄2

4
−

W‖D̄2

24
+

(D
⟂
+D‖)2

4

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

h4(1,𝜅) 2h2(1,𝜅) 1

h4(0,𝜅) 2h2(0,𝜅) 1

h4(
1√
2
,𝜅) 2h2(

1√
2
,𝜅) 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

𝛾

𝛿

𝜖

⎤⎥⎥⎥⎦
=M

⎡⎢⎢⎢⎣

𝛾

𝛿

𝜖

⎤⎥⎥⎥⎦
.

(9)�(�−�2)=�2�+�2−2���.

T A B L E  1  Illustration of sets of biophysical (BP) parameter values resulting in the same diffusion–kurtosis (DK) parameters

DK parameters Branch BP parameters C new invariants

[D‖, D
⟂

, W‖, W
⟂

, W̄] [f , Da, D
‖

e
, D⟂

e
,�] ζ1 ζ2

[1.503, 0.195, 1.456, 0.291, 0.926] + [0.730, 2.000, 1.000, 0.300, 8.000] −0.006 0.210

− [0.607, 1.287, 2.191, 0.318, 11.49] 0.023 0.053

[1.557, 1.048, 0.396, 0.708, 0.330] + [0.250, 2.370, 1.300, 1.390, 50.00] 0.349 0.624

− — —

[0.457, 0.408, 2.901, 2.702, 2.770] + [0.879, 1.320, 1.401, −0.232, 0.265] −0.190 0.022

− [0.870, 0.950, 2.000, 0.720, 0.360] −0.023 0.014

− [0.549, 0.182, 1.071, 0.766, 1.414] 0.154 −0.002

− [0.510, 0.076, 0.931, 0.794, 3.187] 0.161 −0.005

[1.560, 1.256, 0.423, 0.540, 0.506] + — —

− [0.240, 1.450, 2.100, 1.400, 2.330] 0.237 0.125

− [0.189, 0.668, 1.887, 1.489, 5.442] 0.325 0.057

Each plus or minus branch can correspond to a single, multiple, or none BP parameters. Some sets of BP parameters fall outside the region of plausible parameters, like 
the + branch solution of the third example. We can observe that the invariants of the not fully symmetric part of C, incorporated by DDE, discriminate between the BP 
parameter sets having the same exact DK representation. All diffusivities are in μm2∕ms and the C components in μm4∕ms2.
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 By plugging the expressions for α, β, γ, δ and ε as functions 
of κ into Equation 9, we obtain a nonlinear equation for κ 
with potentially multiple solutions. Each solution for κ gives 
a single solution for α, β, γ, δ and ε, which in turn, gives a 
single solution for the kernel parameters: 

Thus, the number of solutions to Equation 9 corresponds to 
the number of BP parameter sets that have the same DK pa-
rameters. Table 1 presents cases with up to four solutions. We 
computed the number of solutions for 10k random points in 
the BP parameter space. Most present two solutions (70.2%), 
some only one (29.3%), and only a small proportion have 
four solutions (0.5%). This gives rise to the previously dis-
cussed degeneracy in model parameter estimation from noisy 
measurements.17 In contrast with the claim in Hansen et al51 
even in the extreme case of parallel fibers leaving only four 
unknowns, the five equations in Equation 6 are independent. 
This is possible due to the nonlinear nature of the system. If κ 
is known and not zero (including the limiting case κ → ∞ of 
parallel fibers), the full‐system is invertible as long as f is not 
0 or 1, and D⟂

e
 is not null. In that case, each point in the DK 

parameter space (signal profile) corresponds to a single set of 
BP parameters. However, this is not the case for an arbitrary 
unknown κ. Here, the full‐system has five independent equa-
tions with five unknowns, but, depending on the parameter 
values, it can have only one or multiple solutions. This latter 
case makes the inverse mapping an ill‐posed problem.

Using very high b‐values might be considered an option to 
solve this problem, as it will add higher order terms in Equation 
3. However, it is still challenging due to very low associated 
signal‐to‐noise ratio (SNR) and is also unfeasible in most clin-
ical scanners, although bespoke systems with ultra‐strong gra-
dients may provide leverage in this regard.52 Another solution 
that does not require powerful gradients is to seek for indepen-
dent measurements providing new information.

2.4 | Model extension to DDE
DDE adds an extra dimension to the dMRI acquisition, unex-
plored by SDE experiments. For a general multidimensional 
acquisition,32,53 due to the assumption of impermeable com-
partments, within each of which the diffusion displacement 
profile is assumed to be Gaussian, the signal can be written as: 

with the kernel 

for b = tr(B). The b‐tensor of a DDE acquisition is 
B = b1n̂1 ⊗ n̂1 + b2n̂2 ⊗ n̂2, defined from the pair of gradient 

directions, n̂1, n̂2, and their individual diffusion weightings, b1, 
b2. It has in general two non‐zero eigenvalues, viz. PTE. In con-
trast, the SDE’s b‐tensor, B = bn̂ ⊗ n̂, has only one non‐zero 
eigenvalue, viz. LTE. Hence, for this model a SDE acquisition 
is a subset of the DDE acquisitions (SDE = DDE‖ ⊂ DDE), 
for which n̂1 = n̂2 (parallel direction pair).

2.5 | DDE information gain
DDE can, in principle, provide independent complemen-
tary information. This could transform the inverse map-
ping of recovering BP parameters from diffusion‐weighted 
measurements into a well‐posed problem. The fourth order 
cumulant expansion for the dMRI signal arising from a 
DDE experiment is 

Here, C is the second cumulant tensor of the dMRI signal 
expansion in terms of the b‐tensor and satisfies minor and 
major symmetries: 

but it is not totally symmetric. Its totally symmetric part is 
proportional to the kurtosis tensor: 

For MGCs or DDE with long mixing times,31D and C can be 
written as 

where f� and D(�)

ij
 denote the fraction and diffusion tensor of 

compartment α, including in this summation the integral over 
the unit sphere with the ODF (cf. Equation 1). This motivated 
naming C as the diffusion tensor covariance.31,32 Our defini-
tion of C coincides with the one in Westin et al32 and for long 
mixing times it is also proportional to the Z tensor 
(C = Z∕(4Δ2)), earlier introduced in Jespersen.31 The Z ten-
sor is defined more generally, i.e. not restricted to MGCs, as 
a cumulant of the DDE signal.

In the case of a Watson ODF, W and C are transversely 
isotropic fourth order tensors, i.e. they have cylindrical sym-
metry. Hence, instead of having 15 and 21 independent com-
ponents they only have three and five, respectively. We can 
write both tensors as a function of coordinate independent 
tensor forms (for full derivation see Appendix B), like it is 
done for W in Hansen et al51 (Equation 6): 

(10)f =1−
�2

�
, Da =

��−��

�−�2
,Δe =

�

�
, D⟂

e
=
�

�
.

(11)SNODDIDA(B)=S0 �
�2

(û)(B,û)dSû,

(12)
(B,û)= f exp [−DaBijuiuj]+ (1− f ) exp [−bD⟂

e
−ΔeBijuiuj],

(13)

log (S∕S0)= −BijDij +
1

2
BijBk�Cijk�

= −(b1n1in1j + b2n2in2j)Dij

+
D̄2

6
(b2

1
n1in1jn1kn1� + b2

2
n2in2jn2kn2�)Wijk�

+ b1b2n1in1jn2kn2�Cijk� .

(14)Cijk� = Cjik� = Cij�k = Ck�ij,

(15)D̄2Wijk� = 3C(ijk�) = Cijk� + Ci�jk + Cik�j.

(16)

Dij = ⟨Dij⟩ = ∑
�

f�D
(�)

ij
,

Cijk� =
�
(Dij−⟨Dij⟩)(Dk�−⟨Dk�⟩)

�
=
∑
�

f�D
(�)

ij
D

(�)

k�
−DijDk� ,
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where C was written separating its fully symmetric part from 
the remaining part,54 and 

where �ij is the Kronecker delta and �̂ the Watson distribution 
main direction. Equation 17 shows explicitly that C contains 
two extra degrees of freedom independent of W. Observe that 
the fully symmetric part of R and J vanishes, so that the in-
formation encoded in �1 and �2 is not accessible from a SDE 
experiment.28 We can isolate the new non‐symmetric compo-
nents by the antisymmetrization 

Considering a coordinate frame with the z‐axis parallel to 
the fibers main direction �̂, we can identify 

Similarly to Equation 6 we can relate the elements of C 
to the biophysical parameters like it was done for W. For the 
SM, including NODDIDA, D and C are given by 

where 

For NODDIDA we get h2(�, �) = H
(2)

ij
ninj and 

h4(�, �) = H
(4)

ijk�
ninjnkn

�
, with 𝜉 = �̂ ⋅ n̂. The cross‐terms of C 

present new information not accessible from SDE. This makes 
the DDE signal able to resolve the degeneracy. To make this 
explicit, we can write the components isolated in Equation 20 
in the adapted coordinate frame in terms of BP parameters: 

Those two equations are independent to the ones in Equation 6, 
adding complementary information to the mapping between 
DK and BP spaces (see last column in Table 1). Using the 
same variables defined in Equation 7 we get 

These two equations enlarge the system in Equation 8. 
Following the derivation in Appendix C, we demonstrate that 
they determine a single solution for κ: 

since the left‐hand side is a strictly monotone increasing 
function on κ. This agrees with recent work by Cotaar 
et al,55 who showed that combining different b‐tensor 
shapes can determine robustly fiber dispersion. Observe 
that the cases f = 0 or f = 1 reflect only an apparent 
degeneracy, as the different sets of parameters represent 
the same physical model. In contrast, the case of κ = 0 
presents a proper degeneracy of the model due to lack of 
information, where different model instances have identi-
cal D and C tensors.

3 |  METHODS

3.1 | Signal generation
All synthetic measurements were generated from substrates 
composed of 1 μm diameter cylinders to simultaneously as-
sess our stick approximation. We found this difference was 
below the noise level. We computed the signal attenuation in 
the cylinder’s perpendicular plane with the Gaussian phase 
approximation for both SDE56 and DDE.30

Since there is no closed analytical solution for the integral 
on the sphere in Equation 11, we computed the spherical con-
volution using Lebedev’s quadrature57: 

where wi are the quadrature weights of each grid point ûi 
across the unit sphere. For all configurations of SDE and 
DDE we used 1,202 quadrature points, which guarantee an 
exact result up to a 59th order spherical harmonics decom-
position of the ODF. No practical differences were found 
between the results from our SDE implementation and the 
analytic summation for SDE in Zhang et al.43

Finally, Rician noise was added to the synthetic signals, 
normalizing it to obtain a SNR = 50 for the b0 measurements, 
like in Jelescu et al.17

(17)

W = 𝜔1P + 𝜔2Q + 𝜔3I and C =
1

3
D̄2W + 𝜁1R + 𝜁2J,

(18)

Pijk� = �i�j�k��
,

Qijk� =
1

6

(
�i�j�k� + �k��

�ij + �i�k�j� + �j�k�i� + �i��
�jk + �j��

�ik

)
,

Iijk� =
1

3

(
�ij�k� + �ik�j� + �i��jk

)
,

Rijk� =
1

2

(
�i�j�k� + �k��

�ij

)
−

1

4

(
�i�k�j� + �j�k�i� + �i��

�jk + �j��
�ik

)
,

Jijk� = �ij�k�−
1

2

(
�ik�j� + �i��jk

)
,

(19)Cijk�−Cikj� = �1(Rijk�−Rikj�) + �2(Jijk�−Jikj�).

(20)
Cxxyy−Cxyxy =

3

2
�2 and Cxxzz−Cxzxz−Cxxyy + Cxyxy =

3

4
�1.

(21)

Dij = [f Da + (1− f )Δe]H
(2)

ij
+ (1− f )D⟂

e
�ij,

Cijk� = [f D2
a
+ (1− f )Δ2

e
]H

(4)

ijk�

+ (1− f )D⟂

e
Δe

(
�ijH

(2)

k�
+ �k�H

(2)

ij

)

+ (1− f )D⟂2
e
�ij�k�−DijDk� ,

(22)

H
(2)

ij
= �

�2

(û)uiujdSû and H
(4)

ijk�
= �

�2

(û)uiujuku
�
dSû.

(23)

3

2
�2 = Cxxyy−Cxyxy

= (1− f )

�
D⟂

e
Δe

�
H(2)

xx
+ H(2)

yy

�
+ D⟂

e

2
�
−DxxDyy

= (1− f )

�
2D⟂

e
Δeh2(0,�) + D⟂

e

2
�
−D2

⟂
,

3

4
�1 = Cxxzz−Cxzxz−Cxxyy + Cxyxy

= (1− f )D⟂

e
Δe

�
H(2)

zz
−H(2)

yy

�
−Dxx(Dzz−Dyy)

= (1− f )D⟂

e
Δe(h2(1,�)−h2(0,�))−D

⟂
(D‖−D

⟂
).

(24)
2h2(0,�)� + � =

3

2
�2 + D2

⟂
and

(h2(1,�)−h2(0,�))� =
3

4
�1 + D

⟂
(D‖−D

⟂
).

(25)
h4(1,𝜅)

h4(0,𝜅)
=

1

3
W‖D̄2−

3

2
(𝜁1 + 𝜁2) + (D‖−D

⟂
)2

1

3
W

⟂
D̄2−

3

2
𝜁2

(26)∫
�2

f (û)dSû ≈
∑

i

wi f (ûi),
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3.2 | Parameter estimation algorithm
Parameter estimation was based on a nonlinear least squares 
estimator. This was justified due to the relatively high SNR 
considered for the experiments, where Rician noise can be 
approximated as Gaussian.58 We used the Trust Region 
Reflective algorithm implemented in the MATLAB (R2016a, 
MathWorks, Natick, Massachusetts) optimization toolbox. 
The objective cost function was 

where N is the total number of measurements, Bi in-
dicates the b‐tensor used in the i‐th measurement and 
� = [f ,Da, D

‖
e , D⟂

e
, �] is a vector containing the model param-

eters. The main direction of the fibers, �̂, and S0 were fitted 
independently in a first stage through a DTI fitting like in 
Jelescu et al.17 For all configurations, this optimization pro-
cedure was repeated using 30 independent random initializa-
tions for the model parameters to avoid local minima of the 
five‐dimensional cost function. The local solution with the 
lowest residue was the global optimum.

3.3 | SDE and DDE tested configurations
Five encoding configurations were considered: DDE60+ 0, 
DDE40+ 20, DDE30+ 30, DDE20+ 40, and DDE0+ 60, with pro-
gressively increasing proportions of perpendicular direction 
pairs, b, with respect to parallel direction pairs, a, denoted 
as DDEa+ b. Observe that DDE60+ 0 is equivalent to SDE if 
MGCs are assumed. We compared the SDE protocol used 
in Jelescu et al17 against different DDE acquisitions with 
the same number of measurements that can be measured in 
a similar experimental time. The SDE measurement proto-
col had two shells with b‐values of 1 and 2 ms∕μm2 with 
30 directions each.17 These directions were generated using 
the Sparse and Optimal Acquisition (SOA) scheme.59 DDE 
configurations were also divided in two shells with the same 
b‐values as above and both directions in each pair had equal 
individual diffusion weightings, b1 = b2 =

1

2
b. Thus, per-

pendicular direction pairs define axially symmetric planar 
b‐tensors, uniquely defined by their normal vector. We gen-
erated homogeneously distributed normal vectors using the 
same algorithm used for the SDE directions. The DDE30+ 30 
acquisition had 30 parallel direction pairs and 30 perpen-
dicular direction pairs with normal vectors coinciding 
with the parallel pairs33 (see middle diagram in Figure 2). 
The DDE0+ 60 protocol had only perpendicular directions 
pairs (right diagram in Figure 2). Configuration DDE40+ 20 
had two parallel per each perpendicular directions pair, 
and DDE20+ 40 two perpendicular per each parallel direc-
tions pair. All acquisitions had five non diffusion‐weighted 
measurements (i.e. b0 measurements).

3.4 | Experiments
We performed two in silico experiments to assess whether 
the addition of DDE measurements can enhance the pa-
rameter estimation in the presence of typical noise in the 
measurements.

In the first experiment, we considered two possible instances 
of NODDIDA parameter values for a voxel in the posterior limb 
of the internal capsule (PLIC) taken from Jelescu et al17 (see 
Table 2), for which SDE estimates showed a bimodal distribu-
tion. We explored in detail whether DDE solves the degeneracy 
between these particular cases. Only SDE and DDE30+ 30 acqui-
sition configurations were considered for this experiment. Two 
thousand and five hundred independent realizations of Rician 
noise were added to the synthetic SDE and DDE signals.

The second experiment aims to compare the ac-
curacy and precision provided by SDE and the differ-
ent DDE configurations extensively along the feasible 
region of the full five‐dimensional (5D) space of param-
eters (diffusivities between 0 and 3 μm2∕ms, fraction be-
tween 0 and 1, and κ positive). This allows exploring 
whether there are subregions presenting different behav-
iors. A 5D grid was generated by all the combinations of 
f = [0.1, 0.3, 0.5, 0.7, 0.9], Da = [0.3,0.8,1.3,1.8,2.3]μm2∕ms,  
D

‖
e = [0.8, 1.3, 1.8]μm2∕ms, D⟂

e
= [0.5, 1, 1.5]μm2∕ms, and  

κ = [0.84, 2.58, 4.75, 9.27, 15.53, 33.70]. The fraction and  
the diffusivities were selected from a uniform discreti-
zation of the expected range, and κ values were chosen 
such that the mean‐squared‐cosine corresponding angle, 
⟨cos2 𝜑⟩ = c2 = ⟨(û ⋅ �̂)2⟩ = (2

√
𝜅F(

√
𝜅))−1− (2𝜅)−1, was 

� = [50◦, 40◦, 30◦, 20◦, 15◦, 10◦] (c2 = [0.41, 0.59, 0.75, 
0.88, 0.93, 0.97]). We generated 50 independent Rician noise 
realizations (SNR = 50) for the measurements of each com-
bination of the parameters for the five configurations.

4 |  RESULTS

Histograms of the estimated model parameters from the 
first experiment (Figure 3) show an increase in the accuracy 
and precision of the estimates with the DDE scheme. The 
bimodal distribution of the estimated parameters is evident 
with the SDE acquisition, confirming that it is not possi-
ble to differentiate true and spurious minima. This effect is 
removed when using the DDE sequence.

We analyzed the shapes of the SDE and DDE ob-
jective functions from the synthetic measurements of 
SET A (sum of squared differences: FA(�)). To facil-
itate the visualization of these 5D functions, we per-
formed a 1D cut through a straight line joining the true 
and spurious minima of SDE. This was parametrized with 
the scalar variable t: � = t�spur + (1− t)�true; t ∈ [0, 1],  
where �true = [0.38, 0.5, 2.1, 0.74, 64] and 

(27)F(�) =

N∑
i

(S(Bi,�)−SNODDIDA(Bi,�))2,
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�spur = [0.78, 2.67, 0.32, 0.85, 3.65], with diffusivities ex-
pressed in μm2∕ms. Figure 4 shows the behavior of FA(�) 
along this cut as a function of t. It can be observed that al-
though the DDE objective function is still bimodal, the spu-
rious and true minima have significantly different absolute 
values (due to the contribution of the tensor C to the DDE 
signal). This enables us to distinguish both peaks in condi-
tions where SDE cannot (i.e. bmax = 2 ms∕μm2). Adding 
more directions to the SDE acquisition would not help to dif-
ferentiate the peaks, as even in the noiseless case these two 
sets produce the same signal. Only by increasing the SDE 
diffusion weighting the spurious minimum could be differen-
tiated from the true one.

For each point in the 5D grid of parameters, the Root 
Mean Square Error (RMSE, for definition see for instance60) 
of each parameter has been computed from 50 independent 
noise realizations. The distributions of RMSE of the param-
eter estimates from this second experiment are displayed in 
Figure 5 with violin plots (similar to box plots but showing 
also estimated probability density61). The summary statistics 
of the RMSE distributions are shown in Table 3. On aver-
age, DDE40+ 20 and DDE30+ 30 are the most accurate config-
urations for estimating all parameters. This suggests that the 

incorporation of even a small proportion of DDE measure-
ments can remove the degeneracy, leading to an increase in 
accuracy and precision.

To compare the performance of SDE and DDE in  
different regions of the parameter space, we projected the 5D 
RMSE map onto different 3D sub‐spaces. Figures 6 and 7 
show two different 3D projections, over (D‖

e
, D⟂

e
, c2(�)) and 

over (f ,Da, c2(�)), of the RMSE of f and Da, respectively. The 
highest improvement of DDE with respect to SDE is asso-
ciated with low c2 values, i.e. high orientation dispersion. 
Additionally, for highly aligned voxels the performances of 
both schemes becomes similar.

5 |  DISCUSSION

Our work shows that modifying the diffusion MRI pulse 
sequence can mitigate the degeneracy on NODDIDA’s pa-
rameter estimation. Our proposal circumvents the need of 
presetting diffusivities to a priori values as in NODDI. We 
showed that estimating the NODDIDA model through SDE 
is generally an ill‐posed problem. Depending on the specific 
combination of model parameters, multiple parameter sets 
may produce the same signal profile. We show analytically 
that DDE makes parameter estimation well‐posed, and illus-
trate for a particular model instance the better behaved cost 
function obtained with DDE. In silico experiments over a 
wide range of model parameter combinations confirmed that 
extending the acquisition to DDE makes the inverse prob-
lem well‐posed and solves the degeneracy in the parameter 
estimation. Combining DDE parallel (i.e. LTE) and perpen-
dicular (i.e. PTE) direction pairs not only provides more sta-
ble parameter estimates but also increases their accuracy and 
precision.

F I G U R E  2  Diagram of different measurement protocols (SDE, DDE30+ 30, and DDE0+ 60). Only SDE and DDE30+ 30 were used in experiment 
1, while they all were used in experiment 2. Blue colors denote the SDE directions or DDE parallel direction pairs. DDE perpendicular direction 
pairs are in red

T A B L E  2  Ground truth for experiment 1

Model parameter SET A SET B

f 0.38 0.77

Da[μm2∕ms] 0.50 2.23

D‖
e
[μm2∕ms] 2.10 0.16

D⟂

e
[μm2∕ms] 0.74 1.48

c2(�) 0.98 (64) 0.70 (4)
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In Section 2, we showed that considering a noise‐free 
scenario, in the case of fibers following a Watson ODF with 
known (nonzero) concentration parameter κ (including the 
case of parallel fibers), the inverse problem of recovering 
biophysical parameters from SDE measurements is well‐
posed. This is not the case for arbitrary unknown concen-
tration κ, where Jelescu et al17 first showed experimentally 
that the parameter estimation from SDE with intermediate 
b‐values was degenerated. This was analyzed in Jespersen 
et al49 showing that there were two nonlinear equations 
providing possible solutions. We demonstrated that in the 
absence of noise the number of BP parameter sets that de-
scribe the signal equally well up to (b2) can be either 1, 2, 

or 4. In contrast, we showed analytically that the C tensor 
includes non‐symmetric independent components that are 
accessible by DDE, but not by SDE, allowing the complete 
inverse mapping between the cumulant signal representation 
and BP parameter space. Consistently, the first experiment 
showed that in both of the PLIC synthetic voxels, DDE leads 
to more accurate and precise parameter estimations. This is 
clearly seen when analyzing the optimization cost‐function 
which shows that although DDE also presents multiple local 
minima, the global minimum is substantially deeper, unlike 
SDE, thus it can be picked in typical noise levels. However, 
two points in the 5D model parameter space are insufficient 
to draw more general conclusions. Therefore, the second 

F I G U R E  3  Histograms of the estimated model parameters for SDE (top row) and DDE30+ 30 (bottom row) schemes in the first experiment for 
2,500 independent noise realizations (SNR = 50). The ground truth represents two possible solutions of the NODDIDA model applied to a voxel in 
the PLIC (Table 2). These values are shown in blue lines and correspond to set A (upper two rows), and set B (lower two rows)
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experiment swept the parameter space extensively using a 
regular grid. Mean results (see Table 3) showed the min-
imum RMSE for an acquisition consisting of both linear 
and planar b‐tensors, suggesting that the optimal combina-
tion for the scenario considered is between DDE40 + 20 and 
DDE30 + 30 configurations.

Increasing the total number of measurements and SNR 
will have a larger impact in enhancing DDE parameter esti-
mation than with SDE, since the bimodality present in SDE 
implies a non‐zero lower bound for the achievable MSE 
even without noise. Results from34 show that the addition 
of STE data also leads to an increase in the precision of 
Da and f in in vivo experiments. In our synthetic experi-
ments the addition of PTE data reduces the RMSE in all 
the parameter estimates (to a lesser extent in f and D⟂

e
). 

Recently, Dhital et al35 showed through in silico experi-
ments that incorporating PTE data to LTE data enabled 

us to discriminate spurious solutions in the cost‐function. 
This latter result is explained by our theoretical analysis in 
Section 5 where we derive the independent equations pro-
vided by DDE that make the inverse problem well‐posed. 
While finalizing this paper, a preprint62 appeared, reaching 
similar conclusions.

Biophysical models are promising for extracting micro-
structure‐specific information but care must be taken when 
applying them in dMRI. Some assumptions are more mean-
ingful than others and hence their impact on parameter esti-
mation must be assessed.9 Invalid assumptions in the model 
will likely produce bias in the resulting microstructural in-
formation, which is epistemic and thus such biases cannot 
be removed simply by removing the degeneracy. Releasing 
the diffusivities in the typical two‐compartment model elimi-
nates an invalid assumption, reduces possible biases in the es-
timated parameters, and provides extra information amenable 

F I G U R E  4  Plots of FA(�(t)) for different values of t ∈ [−0.05,1.05], with �(t) = t�spur + (1− t)�true. Black curves show FA values for noise‐free 
SDE and DDE30+ 30 acquisitions. The colored curves show 30 independent realizations of FA for SNR = 50

F I G U R E  5  Violin plots of the RMSE for all model parameters for all voxels in the 5D grid (a total of 5×5×3×3×6 = 1,350). Black 
dots denote the mean and red lines the median. The RMSE for each voxel was computed by repeating the estimation on 50 independent noise 
realizations of the measurements for each voxel

T A B L E  3  Mean and standard deviation of the RMSE over the whole grid for each acquisition protocol and each of the estimated parameters

RMSE (μ; σ) f Da[𝛍m2∕ms] D
‖

e
[𝛍m2∕ms] D⟂

e
[𝛍m2∕ms] c2 = f (�)

SDE 0.14; 0.12 0.74; 0.43 0.51; 0.33 0.33; 0.27 0.13; 0.08

DDE40+ 20 0.10; 0.10 0.39; 0.30 0.41; 0.31 0.29; 0.25 0.08; 0.07

DDE30+ 30 0.11; 0.10 0.39; 0.29 0.42; 0.30 0.30; 0.25 0.08; 0.07

DDE20+ 40 0.11; 0.10 0.40; 0.30 0.43; 0.31 0.31; 0.25 0.08 ; 0.07

DDE0+ 60 0.20; 0.13 0.72; 0.38 0.65; 0.28 0.46; 0.27 0.18; 0.11
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to be used as a biomarker of microstructural integrity and 
sensitive to specific disease processes.44,45,63 In this work, we 
have focused on analyzing the estimability of the model under 
different acquisition settings. The validation against comple-
mentary real data is an independent problem. Both should be 
addressed further to bring biophysical models to the clinic.

Jespersen et al19 showed the estimation of the SM was 
stable and without degeneracy when using extremely high b‐
values (15 ms∕μm2) on ex vivo data. Recent work by Novikov 
et al18 studied the unconstrained SM and concluded that 
if high b‐values are unfeasible then orthogonal measure-
ments might be an alternative to uniquely relate the kernel 

F I G U R E  6  RMSE of f, for SDE and DDE40+ 20 acquisition protocols. This 3D plot shows the projection over D‖
e, D⟂

e
, and c2 of all the 

RMSE in the 5D grid. This projection was made by computing the square root of the quadratic mean of the errors in the remaining 2 dimensions 
(Eproj,ijk =

�∑
�

∑
m E2

ijk�m
∕(N

�
Nm)). Black dots denote the actual points in the grid, linear interpolation was used to generate the color figures

F I G U R E  7  RMSE of Da, for SDE and DDE40+ 20 acquisition protocols. This 3D plot shows the projection over f, Da, and c2 of all the 
RMSE in the 5D grid. This projection was made by computing the square root of the quadratic mean of the errors in the remaining 2 dimensions 
(Eproj,ijk =

�∑
�

∑
m E2

ijk�m
∕(N

�
Nm)). Black dots denote the actual points in the grid, linear interpolation was used to generate the color figures
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parameters to the signal. Veraart et al extended the SM to 
acquisitions with varying echo time (TE).64 This latter work 
goes in a similar direction to our work here, i.e. adding extra 
dimensions to the experiment and changing the objective 
function to avoid ill‐posedness. However, measuring multi-
ple directions while varying the TE implies increasing the 
acquisition time and TE, affecting the SNR. However, this 
approach can be combined with DDE leading to a DDE 
acquisition with multiple TEs. Recently, Lampinen et al15 
showed that by acquiring data with linear and spherical ten-
sor encodings the accuracy in estimating the microstructural 
anisotropy was increased compared to that derived from 
NODDI’s parameters. Additionally, Dhital et al41 measured 
the intracellular diffusivity using isotropic encoding. These 
two works point in a similar direction than ours, i.e. extend-
ing the acquisition to combine different shapes of b‐tensors to 
maximize accuracy and precision. Future work will study the 
generalization of the model to a multidimensional diffusion 
acquisition, since the C tensor can be fully sampled using 
different combinations of b‐tensor shapes, not only by LTE 
+ PTE. Also, a detailed analysis of the impact of noise will 
be performed, further assessing the practical identifiability of 
the model parameters.

This work’s aim was to demonstrate that it is possible 
to solve the intrinsic degeneracy of the SM with a Watson 
fODF using DDE. Although a cylindrically symmetric 
fODF might be insufficient to model crossing fibers, it 
may provide a reasonable approximation in the spinal cord 
and certain other white matter fiber bundles,65 or in highly 
dispersed tissues like gray matter. Work by Tariq et al has 
extended the initial NODDI model to a Bingham ODF.66 
Additionally, Novikov et al18 proposed the unconstrained 
SM with ODF to be described by a series of spherical 
harmonics. We plan to extend the analysis in this paper 
to general ODFs. The extension of biophysical models to 
multidimensional dMRI acquisitions32 should be further 
explored. The comparisons made in this work between SDE 
and DDE protocols do not consider the optimization of the 
diffusion directions in DDE, just taking four arbitrary cho-
sen DDE protocols extrapolated from an optimized SDE. 
We expect that further optimization of the DDE acquisition 
protocol may also lead to larger improvements. Finally, the 
largest errors in the parameter estimates occur for κ → 0. 
This might mean that for highly dispersed tissue (i.e. grey 
matter) many measurements might be needed to accurately 
estimate model parameters.

6 |  CONCLUSIONS

The potential increase in sensitivity and specificity in 
detecting brain microstructural changes is a major driv-
ing force for developing biophysical models. However, 

non‐linear parameter estimation of these models is not nec-
essarily well‐posed and can lead to unreliable parameter 
values. In this work, we not only extended the NODDIDA 
biophysical model from SDE to DDE schemes, but also 
demonstrated theoretically the advantages this latter ap-
proach has. We illustrated how DDE resolves the degen-
eracy issue intrinsic to this model estimation from SDE. 
We prove theoretically that DDE provides complementary 
information that makes the parameter estimation well‐
posed. Additionally, this extension leads to an increase in 
the accuracy and precision in the model parameter esti-
mates in the presence of noise. The combination of paral-
lel and perpendicular measurements for optimal parameter 
estimation as function of SNR and measurement time re-
mains to be investigated. Our approach does not require 
high diffusion weightings to make the inverse problem 
well‐posed and it can be further developed for the uncon-
strained SM.
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APPENDIX A
Inverting the full‐system for the Watson case

The system in Equation 8 has a unique solution as long as κ ≠ 0 
(det L = p2 and det M = −

1

2
p2p4). Their inverse matrices are: 

These provide expressions for α, β, γ, δ and ε that only de-
pend on κ and the DK parameters.

APPENDIX B 

Invariant decomposition of an axially symmetric fourth 
order tensor

In Hansen et al51 the invariant decomposition of a fully sym-
metric fourth‐order tensor with axial symmetry is presented. 
Here we follow an analogous procedure for the decomposition 
of a fourth order tensor, C, with only major and minor 
symmetries.

Any axially symmetric tensor can be expressed in terms of 
two ingredients: the symmetry axis vector, μ, and the iso-
tropic tensor (Kronecker delta), �ij, which can be grouped by 
the number of copies of μ included. For a fourth order tensor, 
this gives C = E + F + G, where: 

are linear combinations of one term with four times μ, six 
terms including it twice, and three terms not including it, re-
spectively. Imposing the major and minor symmetries of the 
tensor C, we find the constraints a, b = c, d = e = f = g, h, 
and m = n, resulting in only five independent components: 

Finally, splitting each of the three tensors above into its 
symmetric and complementary parts we get: 

where 

result in the tensors defined in Equation 18.

APPENDIX C

Single solution for κ from DDE

From the systems in Equations 8 and 24, we can select 4 
equations generating the joint system: 

By simple linear combinations we reach
  

Finally, dividing the first and second equations, the depend-
ency on γ cancels out, resulting in Equation 25, providing a 
single solution for κ. This is possible since γ is strictly posi-
tive, unless there are no sticks (f = 0) and the extracellular 
diffusion is isotropic (Δe = 0), or if there is no extra‐neurite 
fraction (f = 1) and no axial diffusion inside sticks (Da = 0), 
and h4(0,𝜅) > 0 for all finite κ.

(A1)

L
−1 =

1

p2

�
1 −1

−
1

3
+

1

3
p2

1

3
+

2

3
p2

�

M
−1 =

−4

p2p4

⎡⎢⎢⎢⎣

−p2∕2 −p2∕2 p2

3

14
p2−

5

56
p4

3

14
p2 +

9

56
p4 −

3

7
p2−

1

14
p4

−
3

70
p2 +

5

84
p4−

1

60
p2p4 −

3

70
p2−

3

28
p4−

1

10
p2p4

3

35
p2 +

1

21
p4−

2

15
p2p4

⎤⎥⎥⎥⎦
.

(B1)

Eijk� = a�i�j�k��
,

Fijk� = b�i�j�k� + c�k��
�ij + d�i�k�j�

+ e�j�k�i� + f�i��
�jk + g�j��

�ik,

Gijk� = h�ij�k� + m�ik�j� + n�i��jk,

(B2)

Eijk� = a�i�j�k��
,

Fijk� = b(�i�j�k� + �k��
�ij) + d(�i�k�j�

+�j�k�i� + �i��
�jk + �j��

�ik),

Gijk� = h�ij�k� + m(�ik�j� + �i��jk),

(B3)
C = aP + (2b + 4d)Q + (h + 2m)I +

4

3
(b−d)R +

3

2
(h−m)J,

(B4)
Pijk� =

1

a
E(ijk�),

Qijk� =
1

2b+ 4d
F(ijk�), Iijk� =

1

h+ 2m
G(ijk�),

Rijk� =
3

4(b−d)
(Fijk�−F(ijk�)), Jijk� =

3

2(h−m)
(Gijk�−G(ijk�)),

(C1)

⎡⎢⎢⎢⎢⎣

h4(1,𝜅)2h2(1,𝜅) 1

h4(0,𝜅)2h2(0,𝜅) 1

0h2(1,𝜅)−h2(0,𝜅) 0

02h2(0,𝜅) 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

𝛾

𝛿

𝜖

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

1

3
W‖D̄2 + D2

‖
1

3
W

⟂
D̄2 + D2

⟂

3

4
𝜁1 + D

⟂
D‖−D2

⟂

3

2
𝜁2 + D2

⟂

⎤⎥⎥⎥⎥⎥⎦

(C2)


